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ABSTRACT: Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many
spectroscopic methods in conjunction withmultivariate analysis have been used to solve these issues. However, successes to date are
limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods
(the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not
always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary
conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow
adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary
calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation
sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the
methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil.
Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other
agriculture products.
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’ INTRODUCTION

With increasing international demand for extra virgin olive oil,
the price has increased well above those of the most common
edible oils. The International Olive Oil Council defines extra
virgin olive oil as being produced by physical means with no
chemical treatment, having no more than 0.8% acidity, and
having been judged to have a superior taste.1 In attempts to
increase profits, extra virgin olive oil is adulterated with lower
grade olive oil and/or less costly edible oils such as sunflower or
hazelnut oils. It has been well documented that multivariate
analysis methods in conjunction with spectroscopic measure-
ments are able to predict adulterant concentrations in extra virgin
olive oil samples.2-17 Frequently used spectroscopic approaches
are fluorescence,2,3 Raman,4-7 infrared,8-11 and near-infrared.12-14

In these spectroscopic studies, a series of extra virgin olive oil
samples from one or more geographical region, growing season,
and cultivar have adulterant oil added, such as sunflower, corn, or
olive pomace, over a range of concentrations. The samples are
spectroscopically measured, and a multivariate calibration model
is formed using a method such as partial least-squares (PLS).
This model is then used to predict adulterant oil concentrations
in new samples. Such an approach is successful as long as new
samples are from the same population used to form the calibra-
tion model.

Olive oils have distinct chemical compositional differences
based on which region the olive oil comes from. For example, the

fatty acids present in the triacylglycerol and respective locations
on the glycerol backbone vary due to chemical or physical factors,
such as soil composition, climate, elevation, and time at which the
olive oil was harvested.15,16 Because of this variance, many spec-
troscopic studies have been able to demonstrate successful geo-
graphical classifications of extra virgin olive oils 16-26 as well as
distinguish between virgin olive oils, pure olive oils, and olive pomace
oils27 and cultivar identification.28 Common spectroscopic appro-
aches are fluorescence,17,27 infrared,18,19,28 near-infrared,19-21,28

and nuclear magnetic resonance (NMR).22-26 In two geograph-
ical classification studies, harvest year was found to have a greater
influence on geographically grouping virgin olive oils compared
to the cultivar and actual origin.16,26 Other studies have shown
that geographical classification with multiple harvest years is less
accurate than single-year classification models.22,24 A geographi-
cal classification study based on certain harvest years was not able
to accurately classify samples from the same regions but different
harvest years.21 A seasonal effect has also recently been observed
in another classification study.20

Other studies have shown that fluorescence,29 Raman,4,6,30,31

infrared,10,11,31near-infrared,12,14 andNMR32canbeused todetermine
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whether a sample of extra virgin olive is pure or adulterated.
Again, the success of these investigations relies on fact that the
validation sets used are from the same population as the
calibration set used to form the discriminating model.

Predicting adulterant concentration in extra virgin olive oil is
the focus of this paper. The calibration model used for predic-
tions is likely to be specific to the calibration sample set of
geographical regions, growing seasons, cultivars, and extraction
methods (the primary conditions). Thus, such a model will
probably not be able to accurately predict new samples originating
from new geographical regions, growing seasons, etc. (secondary
conditions). In a recent study, it was found that sunflower
adulteration concentration determination was more accurate
with signal regional models compared to a model based on all
Greek regions.6 In another study, the best prediction models
were those based on one harvest year to predict sunflower
adulteration concentration from samples in that same year
compared to a multiple harvest year model.8 Because it is indeed
expected that samples will derive from new secondary condi-
tions, then methods need to be developed allowing a primary
calibration model to accurately predict adulterant concentrations
for new samples from the secondary condition population.

Several multivariate calibration maintenance and transfer
methods have been proposed that may be applicable to the extra
virgin olive oil problem just described and are well reviewed.33

The original broad basic goal of calibration maintenance and
transfer in analytical chemistry is to allow the primary calibration
model to remain useful for the analyte in secondary conditions
such as a new temperature, pressure, particle size, pH, or
humidity, new spectrally responding species, a different instru-
ment, or the same instrument at a later point in time from the
primary calibration development. Essentially, the primary cali-
brationmodel needs to bemaintained to accurately predict under
new chemical, physical, environmental, and/or instrumental
effects not spanned in the primary calibration domain. This
paper expands fundamental calibration maintenance and transfer
to include new geographical regions. Three common approaches
exist and are described next, mostly in the context of geographical
regions, but these methods can also be described in terms of
climate, tree variety, and other sources of extra virgin olive oil
differences.

The first approach is to build a global model robust to
geographic regional effects from all extra virgin olive oil produc-
tion regions. Building such a model requires many samples from
each region to properly span anticipated regional variances. This
approach is unrealistic due to the number of samples required to
fully span all geographic regions. Additionally, for growing season
effects, it is impossible to form a model that spans future climatic
effects. When too many regions and other spectroscopic var-
iances are included in the calibration set, the predictive quality in
terms of accuracy has been shown to degrade compared to having
only a few regions in the calibration set.6 This result suggests
forming single regional models, but the number of regions that
produce extra virgin olive oil is too great to build a model for each
individual region. Also, as with one model for all regions, this
would entail a large number of samples for each region and does
not address climatic or tree variety effects.

Global modeling can also be accomplished by using spectral
preprocessing methods such as multiplicative scatter correction,
finite impulse response filters, derivatives, and orthogonal correc-
tion.33 Work has also shown that by selecting specific wave-
lengths from the respective spectral range, a model can be made

robust to the primary and secondary conditions. This is impor-
tant as two of the TR methods studied include wavelength
selection as part of the calibration maintenance and transfer
process.

The second approach is to manipulate sample spectra mea-
sured from a new region to fit the regional spectra used to form
the primary model. However, to accomplish this conversion, a
transformation matrix is needed. The transformation matrix
allows mapping from one spectral domain to another and is
based on a small set of samples measured in both the primary and
secondary conditions. Clearly this is not realistic when one is
correcting for a regional effect as it is impossible to measure the
same extra virgin olive oil sample from two different geographical
regions.

The third approach is model updating by augmenting sample
spectra from a new region to the primary regional samples,
allowing an updated model to be formed for predicting samples
from the new region. Similar to the robust global model approach,
many samples would normally be required to span the new
region to fully account for the new spectral regional information.
This amounts to a full recalibration. However, using the newly
developed Tikhonov regularization (TR) approaches,34-36 only
a few samples from the new region should be needed to update
the model. In essence, the approach is to expend extra effort
collecting many samples from the primary region(s) and form a
well-defined accurate model (a “golden” model) for the primary
region. Then, only a few samples from the new secondary region
(or growing season, tree variety, etc.) are used with TR to update
the model.

Using a near-infrared spectral data set predicting ethanol in
three-component mixtures, two TR-based methods successfully
updated a primarymodel formed at one temperature to predict at
new temperatures.34-36 Similarly, these TR variants successfully
updated a primary model formed on one instrument to predict
sample analyte concentrations using spectra measured on an-
other instrument. These studies were based on corn samples
measured on three near-infrared spectrometers. In both data sets,
a TR method including wavelength selection performed best.
Unlike most other calibration maintenance and transfer meth-
ods, model updating with TR can correct for situations when new
variances arise such as new spectrally responding species or the
adulterant concentration is outside the primary concentration
range.

Although geographical difference can be as great as between
countries, for example, extra virgin olive oil samples from Spain,
Italy, Portugal, and Greece, this paper concentrates on regional
differences of extra virgin olive oil within Greece. Specific regions
studied consist of using Zakynthos as the primary calibration
region to predict samples from Attica and from a commercial
source of unknown region(s) (supermarket samples). The
adulterant studied in this paper is sunflower oil. Also studied in
this paper is a new third TR variant that includes a new version of
wavelength selection. Thus, two of the three studied TR variants
include wavelength selection as part of the model updating.

’TIKHONOV REGULARIZATION VARIANTS

A standard relationship for the primary multivariate calibra-
tion model is stated as

y ¼ Xbþ e ð1Þ
where y represents anm� 1 vector of quantitative analyte values,
such as the concentration of adulterant, for m calibration
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samples, X denotes the m � n matrix of spectra measured at n
wavelengths or frequencies, and b symbolizes the n� 1 vector of
primary model coefficients. The m � 1 vector e indicates
normally distributed errors with mean zero and covariance
matrix σ2I. When n . m, the common spectral situation, then
methods such as ridge regression (RR, a form of TR), PLS, or
principal component regression (PCR) can be used to estimate b
by b̂ = Xþy, where Xþ is the respective pseudo inverse of X. The
estimated model vector b̂ needs to accurately predict analyte
values in any new sample spectrum xnew by ŷnew = xtnewb̂.
Wavelengths can be selected and have been shown to improve
prediction accuracy. If a small enough wavelength set is selected
such that n e m and X is well conditioned, then multiple linear
regression (MLR) can be used to estimate the model vector.

To update a primarymodel to a secondary condition (geographi-
cal region, growing season, etc.), only a few samples from the new
region need to be spectrally measured if these new samples are
properly weighted by λ. LettingM and yM denote the new spectra
and adulterant concentrations, respectively, eq 1 is modified to
include the weighted augmentation as (ignoring the e term)

y
λyM

 !
¼ X

λM

 !
b ð2Þ

The weight meta-parameter (tuning parameter) prevents the
new calibration model from being overly influenced by the
original primary region. In recent calibration maintenance and
transfer work,34 it was found that eq 2 needed a second tuning
parameter (η) to stabilize an inverse computation in the TR
algorithm, forming

y
0
λyM

0
BB@

1
CCA ¼

X
ηI
λM

0
BB@

1
CCAb ð3Þ

This TR approach and another TR variant used in this study are
well described34-36 and briefly summarized next, allowing a brief
introduction to a new third TR variant.
TR 2. A solution to eq 3 satisfies

minðjjXb- y jj 22 þ η2 jjb jj 22 þ λ2 jjMb- yM jj 22Þ ð4Þ
where ||•|| denotes the vector p-norm and the subscript p = 2
symbolizes the vector 2-norm (Euclidean norm). If the third
term is removed, expression 4 reduces to RR. Thus, expression 4
can be thought of as RR with an additional 2-norm penalty on
predicting a few samples from the new region. As with using PLS
for eq 2, twometa-parameters need to be determined to form the
final model. Determination of these parameters is based on an
L-curve approach and is briefly discussed under Results and
Discussion.
TR 2-1. An alteration of TR 2 is to use a 1-norm penalty on the

model vector instead of a 2-norm penalty. In this case, expression
4 becomes

minð jjXb- y jj 22 þ τ jjb jj 1 þ λ2 jjMb- yM jj 22Þ ð5Þ
where τ symbolizes the meta-parameter weighting the 1-norm
penalty. By switching to the 1-norm, b is now restricted to being a
sparse solution forcing wavelength selection. The TR 2-1method
simultaneously forms the model and selects wavelengths. Both τ
and λ are determined by the L-curve approach tometa-parameter
selection. If the third term is removed, the TR expression is
commonly known as the least absolute shrinkage and selection

operator (LASSO). In this case, a primary calibration model can
be formed with wavelengths selected37 and will be referred to as
TR LASSO in this paper.
TR 2b. The final and third variant of TR studied in this paper

is new and has not been investigated for modeling updating. This
variation is similar to TR 2 except an n � n diagonal matrix L is
used in the model 2-norm penalty. Expression 4 is modified to

minð jjXb- y jj 22 þ η2 jjLb jj 22 þ λ2 jjMb- yM jj 22Þ ð6Þ
where the diagonal of L contains a TR 2 model vector as 1/|b̂i|.
After first forming a model vector solving expression 4, the goal is
to form the next model vector using expression 6 such that
wavelengths with large model vector coefficients are weighted
more than small coefficients. In a basic multivariate calibration
study with no concern for calibration maintenance and transfer,
such an approach was found to be useful. Bands of important
wavelengths were selected compared to the 1-norm TR LASSO
approach that tends to select single wavelengths.37 Both η and λ
in expression 6 are determined by the L-curve approach.

’MATERIALS AND METHODS

Software. MatLab 7.8 (TheMathWorks, Natick, MA) was used for
the three TR algorithms including the least angle regression (LAR) used
in TR 2-1 to incorporate the 1-norm. These algorithms are have been
previously described.35,37

Data Centering. Data are mean centered using the local mean
centering approach. Local mean centering is the process whereby X, y,
M, and yM are each mean centered to respective means. Validation spectra
measured in the same region asM are thenmean centered to themeanofM.
Data Set. Extra virgin olive oil samples and synchronous fluores-

cence spectra are the same as those previously described and used to
form a PLS model predicting sunflower oil concentration.2 Greek
regional extra virgin olive oil samples and local shop samples of Greek
origin were varied in sunflower oil concentration ranging from 0.5 to
95% (w/w). The spectral range used is from 250 to 502 nm atΔλ = 80 nm.

Extra virgin olive oil samples come from three sources: the two
geographical regions Zakynthos and Attica and purchased from a local
shop in Athens. Of the 28 samples used fromZakynthos, 10 were randomly
selected to form the primary regional calibration model and the remaining
18 samples were used to validate the primary model. The calibration and
validation samples respectively ranged from 4.741 to 89.949% and from
9.714 to 94.540% sunflower oil. A total of 10 Attica samples are available. Of
these, 4 were randomly selected to serve as the standardization set (M) and
the remaining 6 formed the validation set. The standardization set and
validation samples, respectively, ranged from 6.412 to 72.556% and from
2.6596 to 89.7207% sunflower oil. Thirteen local shop samples exist; 4 were
randomly selected for the standardization set, and the remaining 9 samples
served as the validation set. The standardization set and validation samples,
respectively, ranged from 1.095 to 77.956% and from 0.720 to 91.873%
sunflower oil. Plotted in Figure 1 are mean regional spectra.
Meta-parameter λ, η, and τ Values. For TR 2 and TR 2b, η

and λ values ranged exponentially from 0 to 3.75� 106 in 80 increments
for η and 100 increments for λ. Meta-parameter λ for TR 2-1 also ranged
exponentially from 0 to 3.75� 106 in 100 increments. Because the LAR
algorithm is used for the 1-norm, each τ is determined by the LAR
algorithm. Essentially, successive LAR models approach the least-
squares solution and correlate to increasing τ values.

’RESULTS AND DISCUSSION

Principal Component Analysis Plots. Plotted in Figure 2 is
the score plot of the primary region Zakynthos with the first
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principal component (PC) plotted against the second. The first
and second PCs account for 70.71 and 17.38% of the variance inX,
respectively. The Attica and local shop samples are projected into
the primary score space. The score plot reveals that the local shop
score values overlap with the Zakynthos sample score values.
Hence, it is expected that the local shop samples should be fairly
well predicted by a calibration based on samples from Zakynthos.
Thus, model updating may not be necessary for the local shop
samples. Conversely, samples from Attica are not expected to be
accurately predicted as most of the sample score values are outside
the Zakynthos samples. It is anticipated that model updating will
allow new regional samples to be predicted with reduced errors.
TR 2 and 2b Meta-parameter Selection. The L-curve

approach to meta-parameter selection is well documented (see
refs 34-37 and references therein). Briefly, a prediction variance
indicator such as themodel 2-norm is plotted against a prediction
error (bias) merit such as the root-mean-square error of calibra-
tion (RMSEC) or the RMSE for the samples inM (RMSEM). In
such a plot, an L-shaped curve is obtained with the better models
being in the corner region of the L-curve. These models represent
a good variance/bias trade-off. The specific approach to TR 2 and
TR 2b is the same and described in refs 34 and 36. It is based on
the agreement of the RMSEC and the RMSEM plots. Examina-
tion of mean RMSEC and RMSEM values plotted against the
range of λ values and the mean model 2-norms finds an
agreement in the bias/variance trade-off to determine a proper
value for η. Once a proper η value is determined, the λ in the
corner region of the corresponding η L-curve with λ as points on
the curve is selected.
TR 2-1Meta-parameter Selection. The L-curve protocol for

meta-parameter selection is described in ref 35. The L-curve plots

of the model 1-norm against RMSEC and RMSEM are formed
where each L-curve represents a different λ value and each point
on a curve is a LAR model or τ value. As λ increases in value,
putting more weight on the secondary domain represented byM,
L-curves move farther to the left and the RMSEM reduces. The
opposite results for RMSEC L-curves. The first meta-parameter
to select is τ (LAR model). The LAR model is selected from the
corner region of the farthest left RMSEM L-curve. After the LAR
model is selected, the λ value is selected with the fixed τ.
Shown in Figure 3 are the model vectors for each λ at the

selected τ. Figure 3 results from updating the Zakynthos primary
regional calibration model to the extra virgin olive oil samples
from Attica. In Figure 3, the λ number decreases from bottom to
top, but the actual value of λ increases. When λ is close to zero,
the model is good at predicting the primary set (small RMSEC)
and not good at predicting the secondary (larger RMSEM and
root-mean-square error of validation (RMSEV)). As λ increases
in value, the updated model essentially retains its shape with only
a change in the model vector 1-norm (from the 100th to the 55th
λ (0 to 0.0350) in Figure 3). The model vector changes shape as
it starts transitioning to better predict the secondary condition
(from the 54th to the 38th λ (0.0492 to 11.795)). After this, the
model vector has converged to a shape that best predicts the
secondary condition. The value for λ is selected as the smallest
value at which the model vector converges to the updated shape.
This is shown in Figure 3 at the λ with the line (the 37th λ
(16.611)). With increasing λ values (36th to 1st (23.395 to
3.751e6)), model vectors primarily increase in 1-norm and
respective RMSEM values slightly decrease. Selecting the point
of convergence guards against overfitting the model to M.
Validation of Zakynthos Primary Calibration. Shown in

Figure 4 are three model vectors from the primary calibration of
the Zakynthos regional samples. Respective L-curves were used
to select meta-parameters. One model vector is a RR model. The
second one is based on reusing the plotted RR model as the
diagonal of L in expression 6. Because there is no calibration

Figure 1. Regional mean synchronous fluorescence spectra: Zakynthos
(solid line); Attica (dashed line); local shop (dotted line).

Figure 2. Score plot of PC2 against PC1 based on the uncentered
Zakynthos samples adulterated with sunflower oil (blue circles). Attica
(red squares) and local shop (black diamonds) samples are projected
into the Zakynthos score space. Solid symbols are respective validation
samples. For Attica and local shop samples, open symbols are the
respective random samples selected for M.

Figure 3. Attica TR 2-1 updated model vectors at a fixed τ value. As the
λ number decreases from bottom to top, the λ values increase. The line
indicates the λ value selected. See text for selection process.
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maintenance and transfer occurring in forming this model, the
third term is removed. This model will be referred to as RRb. The
third model is a TR LASSO model using expression 5 with the
third term removed, that is, only wavelength selection and, again,
no model updating. These three model vectors are for compar-
ison tomodels updated to the secondary regions and ascertaining
model changes from the updating process. In Table 1 are the
corresponding validation prediction errors. If the only interest is
predicting samples from Zakynthos, then RR provides the best
results. Apparently, using the wavelength selection approaches
does not provide lower prediction errors. The R2, slope, and
intercept values listed in Table 1 result from plotting model-
predicted sunflower oil concentrations against nominal values.
The decreasing slope values observed for the wavelength selection

approaches RRb and TR LASSO add a bias (offset) to predicting
the validation samples. Wavelengths spanning interferent infor-
mation may have been down-weighted too much, and additional
calibration samples could be included.
As noted in refs 2 and 17, the primary nonzero regions of mean

regional spectra in Figure 1 andmodel vectors in Figure 4 are due
to tocopherol and phenolic compounds present in extra virgin
olive oil and sunflower oil. The TR LASSO model does empha-
size the RRb bands of greatest intensity indicating that, perhaps,
specific tocopherol and phenolic variances are emphasized.
TRUpdatingAnalysis. Respectivemeta-parameter values are

selected from L-curves, and shown in Figure 5 are the resultant
updated local shop and Attica model vectors. Listed in Table 2
are model evaluation values for the local shop and Attica valida-
tion samples. Included are sample predictions without any model
updating for comparison with updating. Compared to no updat-
ing, each updating method decreases the RMSEV. As expected
from the score plot in Figure 2, the greatest decrease is for the
samples from Attica.
For both secondary conditions, it is observed that the two

respective RR (no model updating) R2 values are as good as or
nearly the same as the R2 values with updating. However, the larger
RMSEVvalueswith no updating stem from the intercept termbeing
greater than those with updating. Thus, there is a larger bias in the
RR predictions with no updating. In summary, the TR methods are
able to update a model built for one geographical region to predict
samples from another geographical region.
Similar to Figure 4 and as expected, the TR 2-1 local shop

updated model vector keys in on only a few wavelengths and the
TR 2b model is less broad-banded compared to the TR 2 model.
The TR 2 local shop updated model vector is similar in shape to
the Zakynthos RRmodel except in the 250 nm region. Compared
to the TR 2 local shop model, the TR 2b local shop updated
model has increased emphasis in the 300 nm relative to the
315 nm region. Contrarily, the TR 2-1 local shop updated model
vector shows an emphasis on the 315 nm region compared to the
300 nm region. The TR 2-1 model also selects the 275 and
315 nm regions. The shifts in wavelength emphases for the
respective local shop updated models compared to the Zakynthos
primary calibration models shown in Figure 4 may explain the
reduction in prediction error. That is, wavelengths more specific to
regional tocopherol and phenolic compounds are emphasized.
Additionally, it does not appear that selecting wavelengths provides
any distinct advantages in model updating for this data set; that is,
the TR 2 model predicts as well as the TR 2b and TR 2-1 models.
For model updating to the Attic region, similar trends are

observed, albeit, some different spectral regions are emphasized

Table 1. Zakynthos Primary Calibration Predicting Za-
kynthos Validation Samples

method RMSEV R2 slope intercept η or τ ||b̂||2

RR 4.324 0.977 0.992 2.000 3.41e5 2.47e-5

RRb 4.426 0.975 0.963 3.250 1.51 2.86e-5

TR LASSO 5.754 0.961 0.939 5.289 5.83e5 9.79e-5

Figure 4. Model vectors for the Zakynthos region (a) and zoom (b):
RR (blue); RRb (red); TR LASSO (green).

Table 2. Updated Zakynthos Models Predicting Local Shop and Attica Validation Samples

method region RMSEV R2 slope intercept η or τ λ ||b̂||2

TR 2 local shop 1.545 0.998 1.023 -1.418 9.54e5 1.51 2.09e-5

TR 2b local shop 1.564 0.998 1.013 -1.062 2.30 1.07 2.29e-5

TR 2-1 local shop 1.955 0.999 0.957 0.640 2.84e7 257.12 8.79e-5

RRa local shop 6.040 0.999 1.174 -9.047 3.41e5 2.47e-5

TR 2 Attica 1.746 0.998 0.977 -0.308 6.77e5 23.40 3.86e-5

TR 2b Attica 1.971 0.998 0.991 -1.121 3.00 32.95 4.52e-5

TR 2-1 Attica 2.240 0.998 1.005 -1.920 5.43e6 16.61 1.19e-4

RRa Attica 14.871 0.974 0.885 18.121 4.41e5 2.47e-5
aZakynthos as calibration samples and no updating.
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and deemphasized. Most observable are the more jagged peaks
in the TR 2 and TR 2b updated model vectors and, hence, much
less broad-banded. Again, the differences may be indicative of
regional differences in tocopherol and phenolic compounds, the
primary sources of spectral responses in this wavelength range.
The Attica region has the greatest changes from the Zakynthos
RR and RRb models as the Attica samples are more uniquely
different from the Zakynthos samples as noted by the previous
score plot. As with the Zakynthos and local shop samples,
wavelength selection does not provide any unique advantages
for the Attica data set.
Although the TR approaches are applied to synchronous

fluorescence spectra for determining sunflower oil adulteration
concentration, the methods are general and can be used with
other spectroscopic methods and adulterants as well as other
agriculture products. Additionally, the methods should be applic-
able to updating models to new geographical regions, harvest

years, etc., where the primary model distinguishes adulterated
samples from pure extra virgin olive oil. Such a study is currently
under investigation. The TR methods should also be applicable
to models providing geographical classification where themodels
need to be made to work in new secondary conditions such as a
new growing season and/or instrument.
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